15 research outputs found

    An international survey on the pragmatic management of epistaxis

    Get PDF
    Epistaxis is one of the most common ear, nose and throat emergencies. The management of epistaxis has evolved significantly in recent years, including the use of nasal cautery and packs. However, a correct treatment requires the knowledge of nasal anatomy, potential risks, and complications of treatment. Epistaxis is often a simple and readily treatable condition, even though a significant bleed may have potentially severe consequences. At present, there are very few guidelines concerning this topic. The current Survey explored the pragmatic approach in managing epistaxis. A questionnaire, including 7 practical questions has been used. The current International Survey on epistaxis management reported a relevant prevalence (21.7%), mainly during childhood and senescence, an important hospitalization rate (11.8%), the common use of anterior packing and electrocoagulation, and the popular prescription of a vitamin supplement and intranasal creams

    The THESEUS space mission concept: science case, design and expected performances

    Get PDF
    THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ¿20s/early ¿30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).© 2018 COSPARS.E. acknowledges the financial support from contracts ASI-INAF 1/009/10/0, NARO15 ASI-INAF 1/037/12/0 and ASI 2015-046-R.0. R.H. acknowledges GACR grant 13-33324S. S.V. research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606176. D.S. was supported by the Czech grant 1601116S GA CR. Maria Giovanna Dainotti acknowledges funding from the European Union through the Marie Curie Action FP7-PEOPLE-2013-IOF, under grant agreement No. 626267 (>Cosmological Candles>)

    The THESEUS space mission concept : science case, design and expected performances

    Get PDF
    Abstract THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∌ 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ’20s / early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).Peer reviewe

    Automatic Dependent Surveillance-Broadcast Ground-Station Optimal Deployment Problem

    No full text

    Study of the branching ratio and charge asymmetry for the decay K-S -> pi e nu with the KLOE detector

    Get PDF
    Among some 400 million KSKL pairs produced in e(+)e(-) annihilations at DA Phi DNE, similar to 6500 each of K-S -> pi(+)e(-)(v) over bar and K-S -> pi(-)e(+)v decays have been observed with the KLOE detector. From these, the ratio Gamma(K-S -> pi ev)/Gamma(K-S -> pi(+)pi(-)) = (10.19 +/- 0.13) x 10(-4) is obtained, improving the accuracy on BR(K-S -> pi ev) by a factor of four and providing the most precise test of the Delta S = Delta Q rule. From the partial width F(K-S -> pi ev), a value for f(+)(K0) (0) x V-us is obtained that is in agreement with unitarity of the quark-mixing matrix. The lepton charge asymmetry A(S) = (1.5 +/- 9.6(stat) 2.9(syst)) x 10(-3) is compatible with the requirements of CPT invariance. The form-factor slope agrees with recent results from semileptonic K-L and K+ decays. These are the first measurements of the charge asymmetry and form-factor slope for semileptonic K-S decays. (c) 2006 Elsevier B.V. All rights reserved
    corecore